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Equation of state of fully ionized electron-ion plasmas. II. Extension to relativistic densities
and to the solid phase

Alexander Y. Potekhin1,* and Gilles Chabrier2
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~Received 5 June 2000!

The analytic equation of state of nonideal Coulomb plasmas consisting of pointlike ions immersed in a
polarizable electron background@G. Chabrier and A. Y. Potekhin, Phys. Rev. E58, 4941~1998!# is improved,
and its applicability range is considerably extended. First, the fit of the electron screening contribution in the
free energy of the Coulomb liquid is refined at high densities where the electrons are relativistic. Second, we
calculate the screening contribution for the Coulomb solid~bcc and fcc! and derive an analytic fitting expres-
sion. Third, we propose a simple approximation to the internal and free energy of the liquid one-component
plasma of ions, accurate within the numerical errors of the most recent Monte Carlo simulations. We obtain an
updated value of the coupling parameter at the solid-liquid phase transition for the one-component plasma:
Gm5175.060.4(1s).

PACS number~s!: 52.25.Ub, 52.25.Kn, 05.70.Ce, 97.20.Rp
rs
t o
f-

od
ud

-
ik
c

an
n

d

e

d
ng
el
-

a
th

e
in

a

ula
c-
n-

ed-

is
ana-

or
on-
u-

of

om-
n-

ss
ent
-

the
ious
we
uid

s of
er-
ed
en-
us
I. INTRODUCTION

Fully ionized electron-ion plasmas~EIP! are encountered
in laboratory experiments, in stellar and planetary interio
in supernova explosions, etc. From the theoretical poin
view, the free energy of fully ionized EIP provides the re
erence system for models aimed at describing the therm
namic properties of partially ionized plasmas. Thus the st
ies of EIP are of both theoretical and practical interest.

In a previous paper@1#, we have calculated thermody
namic quantities of Coulomb plasmas consisting of pointl
ions immersed in a compressible, polarizable electron ba
ground and devised analytic fitting formulas for these qu
tities. The calculations were based on a linear-respo
theory for the ion-electron (ie) interaction, which is valid as
long as the typicalie interaction energy (Ze)2/2a0 ~wherea0

is the Bohr radius andZe is the ion charge! is smaller than
the kinetic energy of the electrons. This condition is fulfille
either at temperaturesT*105Z2 K or at densities r
*AZ2 g cm23, whereA is the ion mass number. For th
nonrelativistic regime, i.e., at densitiesr!106 g cm23,
finite-temperature effects were included in the electronic
electric function, as well as the local-field correction arisi
from electron correlation effects, following the model dev
oped in Ref.@2#. In the relativistic regime, similar calcula
tions were done using the Jancovici@3# dielectric function.

Since the electron screening is weak at high densities,
since the bulk of calculations have been performed using
nonrelativistic model, our fit for theie contribution was not
very accurate atr*106 g cm23, where the electrons ar
relativistic. Because of the same weakness of the screen
this inaccuracy in theie contribution at highr did not dete-
riorate the overall accuracy for theexcesspart of the free
energy, which sums up the ion-ion (i i ), electron-electron
(ee), and ie contributions. There are, however, physic

*Electronic address: palex@astro.ioffe.rssi.ru
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problems which require an accurate evaluation of theie part
even at high densities~an example is mentioned below!. In
this paper, we present a modification of the analytic form
@1# for the ie free energy that improves significantly the a
curacy in the domain of relativistic electrons, keeping u
changed the previous nonrelativistic results.

Second, we calculate theie part of the free energy for a
Coulomb solid, where the ions form either a body-center
cubic ~bcc! or face-centered-cubic~fcc! lattice. The calcula-
tion is performed in a perturbation approximation, which
accurate because the screening is weak. We employ an
lytic expression for the ion structure factorS(k) of a Cou-
lomb crystal, obtained in Ref.@4# in the harmonic approxi-
mation for large wave numbersk outside the first Brillouin
zone. For smallk, we supplement it by an exact limiting
form of S(k). We evaluate the screening contribution f
both the classical and quantum harmonic crystals and c
struct a fitting formula which accurately reproduces our n
merical results.

The above-mentioned improvements of the equation
state are significant at densitiesr*106 g cm23. Such den-
sities cannot be reached in the laboratory, but they are c
monly encountered in the interiors of white dwarfs and e
velopes of neutron stars~e.g., Ref.@5#!.

In addition, we present simple formulas for the exce
internal and free energies of a classical one-compon
plasma~OCP! liquid, which take into account the most re
cent Monte Carlo~MC! results@6,7#, and which are accurate
for any values of the Coulomb coupling parameter from
gaseous phase to the dense liquid regime. Analyzing var
results for the free energy of the OCP liquid and solid,
revise the value of the coupling parameter at the solid-liq
phase transition.

In the next section, we describe the basic parameter
the EIP. In Sec. III, we consider the OCP liquid and det
mine its freezing point. In Sec. IV, we present an improv
fit to the free-energy contribution due to the electron scre
ing in a Coulomb liquid. In Sec. V, we evaluate an analogo
8554 ©2000 The American Physical Society
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PRE 62 8555EQUATION OF STATE OF FULLY . . . . II. . . .
contribution for a Coulomb solid and fit it by an analyt
expression.

II. THERMODYNAMIC PARAMETERS

We consider EIP consisting of pointlike ions and ele
trons. The basic dimensionless parameters are the ele
density parameterr s and the ion coupling parameterG:

r s5
ae

a0
, G5

~Ze!2

kBTa
5GeZ

5/3, Ge5
e2

kBTae
. ~1!

Here, kB is the Boltzmann constant,ae5( 4
3 pne)

21/3 is the

mean interelectron distance,a5( 4
3 pni)

21/35aeZ
1/3 is the

mean interion distance, andne(ni) denotes the electron~ion!
number density.Ge denotes the coupling parameter for no
degenerate electrons.

Quantization of the ionic motion is important ifT!Tp
5\vp /kB , wherevp5(4pZ2e2ni /mi)

1/2 is the ion plasma
frequency,mi being the ion mass. A corresponding dime
sionless parameter is

h5Tp /T5GA3/RS, ~2!

where

RS5
ami

\2 ~Ze!25
mi

me
r sZ

7/3 ~3!

is the ion density parameter. We neglect ion quantu
exchange effects, which is justified ifRS@G ~see, e.g., Ref.
@8#!.

The electrons are characterized by the degeneracy pa
eteru and the relativity parameterxr ,

u5T/TF , xr5pF /~mec!, ~4!

whereTF is the Fermi temperature,c is the speed of light,
andpF5\(3p2ne)

1/3 is the Fermi momentum. The electro
screening properties are determined by the Thomas-F
wave number

kTF5~4pe2]ne /]m!1/2, ~5!

wherem is the electron chemical potential.
For these parameters, the following estimates are accu

within 0.005%:

xr'0.014 005r s
21'1.0088~r6Z/A!1/3, ~6!

Ge'
22.547xr

T6
, u21'

5930

T6
~A11xr

221!, ~7!

where r65r/(106 g cm23) and T65T/(106 K). In the
nonrelativistic plasma (xr!1), u'0.543r s /Ge . In the ultra-
relativistic case (xr@1), u'(263Ge)

21. If the electrons are
nondegenerate (u@1), kTFae'A3Ge. For strongly degener
ate electrons (u!1),

kTFae'0.185~11xr
22!1/4. ~8!

The ion quantum parameterh is expressed throughxr andG
as
-
ron

-

-

m-

mi

te

h'0.3428GAxrZ
27/6A21/2. ~9!

Within the aforementioned approximation of wea
electron-ion coupling, the total Helmholtz free energyF tot
can be written as

F tot5F id
( i )1F id

(e)1Fee1Fii 1Fie , ~10!

whereF id
( i ,e) denote the ideal free energy of ions and ele

trons, respectively, and the last three terms represent an
cess free energy arising from interactions.F id

( i ) is the free
energy of an ideal Boltzmann gas. For the electrons at a
trary degeneracy and relativism,F id

(e) can be expressed
through Fermi-Dirac integrals and approximated by analy
formulas @1#. An analytic parametrization for the nonide
~exchange and correlation! part of the free energy of the
nonrelativistic electrons,Fee

nr , has been given in Ref.@9#. For
the relativistic electrons, the exchange free energyFx

rel has
been given, e.g., in Ref.@10#, while the correlation correc-
tions are negligible because they contain an additional sm
factor ;a f lnuafu @11#, wherea f'1/137 is the fine-structure
constant. In practice, we use the following interpolation b
tween the nonrelativistic and relativistic regimes: ifGe
>0.07 andr s<0.13, we set

Fee5~12j!Fee
nr 1jFx

rel ,
~11!

j5exp@2~Ge/0.0720.9!222~0.13/r s20.9!22#;

otherwise we setFee5Fee
nr . The interpolation is sufficiently

smooth, becauseFee
nr andFx

rel closely match each other at th
chosen boundary between the two regimes.

In the following sections, we consider the last two term
in Eq. ~10!, which represent the excess free energy of
OCP of ions and the contribution due to the ion-electr
interactions, respectively.

III. OCP AND MELTING TRANSITION

Liquid and solid phases of the OCP have been stud
extensively by various analytic and numerical methods.
the thermodynamic functions of the classical OCP can
expressed as functions of the only parameterG. At G!1, a
diagrammatic cluster expansion yields

uii [
Uii

NikBT
52A3

2
G3/223G3F3

8
ln~3G!1

CE

2
2

1

3G
2G9/2~1.6875A3 lnG20.235 11!1•••, ~12!

whereCE50.577 21 . . . is theEuler constant. Here, the firs
term is the Debye-Hu¨ckel energy, the second one is due
Abe @12#, and the;G9/2 one is due to Cohen and Murph
@13#. SinceFii vanishes at highT, it can be obtained from
Uii by integration:

f i i [
Fii

NikBT
5E

0

Guii ~G8!

G8
dG8 ~13!
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52
G3/2

A3
2G3~ 3

8 ln G10.242 25!

2G9/2~0.649 52 lnG20.196 58!1•••. ~14!

The above analytic expansion is not applicable forG
*1. The most accurate up to date numerical results for
internal energy of the liquid OCP at 1<G<200 have been
obtained by MC simulations by DeWitt and Slattery@6# and
by Caillol @7#. These authors have also constructed anal
fits to their data with the standard deviations comparable
the numerical MC noise. Unfortunately, these fits cannot
extended to smallG, which hampers obtaining the free e
ergy by Eq.~13!. On the other hand, the hypernetted-cha
~HNC! result for Fii at G51 is slightly inaccurate becaus
the HNC approximation neglects the so-called bridge fu
tions in the diagrammatic representation of the interactio
To circumvent the difficulty, DeWitt and Slattery@14# used
small differences between HNC and MC atG50.8 and 0.6 to
get the corrected value off i i (G51)520.4368.

We propose a different approach. We consider the par
etrization

uii 5G3/2F A1

AG1A2

1
A3

G11G1
B1G2

G1B2
1

B3G2

G21B4
, ~15!

whereA352A3/22A1 /AA2. The terms in square bracke
have been used in Ref.@1#, the term withB1 provides an
adjustment of the fit to the MC data at largeG, and the last
term adjusts to Eq.~12! at smallG. The best-fit parameter
with respect to the data@6,7# are given in Table I. Then the
free energy can be obtained from Eq.~13!:

f i i 5A1@AG~A21G!2A2 ln~AG/A21A11G/A2!#

12A3@AG2arctanAG#1B1FG2B2 lnS 11
G

B1
D G

1
B3

2
lnS 11

G2

B4
D . ~16!

The corresponding expression for heat capacity is

CV,i i

NikB
5

G3/2

2 FA3

G21

~G11!2 2
A1A2

~G1A2!3/2G1G2FB3

G22B4

~G21B4!2

2
B1B2

~G1B2!2G . ~17!

Comparison of Eq.~15! with Eq. ~12! at G,1 and with
the MC data from Refs.@6,7# at G>1, supplemented by
some of our HNC calculations, is given in Fig. 1. The upp

TABLE I. Parameters of Eq.~15!. Powers of 10 are given in
square brackets.

Data 2A1 A2 B1 B2 2B3 B4

Ref. @6# 0.9070 0.62954 4.56@23# 211.6 1.0@24# 4.62@23#

Ref. @7# 0.907347 0.62849 4.50@23# 170.0 8.4@25# 3.70@23#
e

ic
to
e

-
s.

-

r

panel displays the ratiouii /G3/2 ~which is constant in the
Debye-Hückel approximation!. The magnitude of the pos
sible error is demonstrated by the lower panel. Here,
dot-dashed line shows the difference between the approx
tion ~15! with the second set of parameters and expans
~12!, while various symbols show residual differences b
tween the same approximation and numerical~HNC and
MC! results. The distribution of the residuals around ze
looks irregular, which indicates that they represent numer
noise of the MC calculations rather than an error of the
~15!. In addition, we have checked that the difference b
tween our fit to the free energy, Eq.~16!, and the one in Ref.
@6# ~at G>1), is of the order of the aforementioned sma
uncertainty inf i i (G51).

More complicated interpolations between the low- a
high-G limits were proposed previously@15,16#. By con-
struction, they reproduce exactly Eq.~12! at G→0 and the
fits to MC results atG@1. Compared with the present fi
however, those interpolations have somewhat larger dif
ences from the HNC results at 0.1,G,1.

The freezing of Coulomb OCP liquid into a bcc cryst
occurs when the free energy of the solid becomes lower t

FIG. 1. Upper panel: comparison of the fit~15! ~solid line! with
the Debye-Hu¨ckel ~DH!, Abe @12#, and Cohen-Murphy@13# ~CM!
approximations~dot-dashed lines!, with the MC results~circles! and
the fit ~dotted line! of Ref. @6# ~DWS!, and with some of our HNC
results~triangles!. Lower panel: residual differences between the
~15! and~i! the analytic expansion~12! ~dot-dashed line!, ~ii ! results
of HNC calculations~triangles!, ~iii ! MC results of Ref.@6# ~open
circles!, and~iv! numerical results of Ref.@7# ~MC1extrapolation!.
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that of the liquid atG5Gm . Nagaraet al. @17# and Dubin
@18#, having improved a previous treatment of anharmo
corrections to the free energy of the Coulomb crystal,
tained Gm517261. However, these authors employed
older fit @19# ~SDD! for the liquid. Figure 2 shows thedif-
ferencesbetweenf i i for the solid and liquid OCP given by
various parametrizations. For the solid, we have adopted
three-parameter fit by Farouki and Hamaguchi@20# to their
molecular-dynamics simulations in the range 170<G<400.
The horizontal long-dashed lines correspond to the stan
deviation of that fit. The line between them represents a fo
parameter fit@20# in the sameG interval. The dot-dashed line
shows the difference between the fit of Ref.@20# and that by
Dubin @18#. The value ofGm indicated above is given by th
intersection of the latter line with the short-dashed o
~SDD!. Using updated results for the OCP liquid@either Ref.
@6# or our Eq.~16!, represented by the dotted and solid lin
respectively# and the OCP solid@20#, we obtainGm5175.0
60.4.

IV. ELECTRON SCREENING IN A COULOMB LIQUID

We now consider electron polarization effects in the E
In a previous paper@1#, we have calculatedFie using the
model developed in Ref.@2# for nonrelativistic EIP. The
HNC equations have been solved numerically for an eff
tive screened interion potentialVeff , which is the sum of the
bare ionic potential and the induced polarization potential
obtainFii 1Fie and corresponding contributions to the inte
nal energy (Uii 1Uie) and pressure (Pii 1Pie). The same
equations solved for the bare Coulomb potential giveFii ,
Uii , and Pii . The difference represents the screening (ie)
part. Inclusion of the finite-temperature effects inVeff pro-
vides a correct treatment of the thermodynamic quanti
over a wide range of values ofG from the Debye-Hu¨ckel
limit G!1 to the strong-coupling limitG@1 for variousr s
andZ.

Relativistic calculations have been performed employ
the same HNC technique but with the Jancovici@3# dielectric
function «(k,xr), which is appropriate at strong degenera
(u!1) and arbitraryxr . The results are in good agreeme
with those obtained by Yakovlev and Shalybkov@11#, who
have used an equation

FIG. 2. Difference between the free energy of the solid O
given by a three-parameter fit of Ref.@20# and parametrizations fo
the liquid OCP according to Refs.@19# ~SDD; short-dashed line!,
@6# ~dotted line!, Eq. ~16! ~solid line!, and for the solid according to
Dubin @18# ~dot-dashed line!. The long-dashed lines marked ‘‘FH’
correspond to the four-parameter fit and to the61s uncertainty of
the three-parameter fit in Ref.@20#.
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S~k,G!@«~k,xr !21#dk, ~18!

whereS(k,G) is the static structure factor of ions~i.e., the
Fourier transform of the ion radial distribution function!.
Equation~18! has been derived by Galam and Hansen@21#
using a thermodynamic perturbation scheme, which can
represented as an expansion in powers ofkTF . We have re-
peated the calculations@11# using a more recent and accura
S(k,G) @22# than in the original work; the change inf ie due
to this update does not exceed 4%.

Note that Eq.~18! differs from the standard first-orde
perturbation approximation by a replacement of@121/«# by
@«21#. The resulting difference'(kTFa)3/6 has the same
order of magnitude as the second-order perturbation cor
tion @21#. Our HNC calculations with the Jancovici dielectr
function at xr&1 and G>1 coincide within 2% with the
results of Ref.@11#, whereas the substitution of@121/«# in
Eq. ~18! yields a considerable difference: for example, f
G51 and Z526 this difference approaches 40% even
large xr . We conclude that the approximation~18! is very
accurate at high densities.

The screening contribution to the free energy of the C
lomb liquid at 0,r s&1, 0,G&300, and 1<Z<26 has
been fitted by the expression@1#

f ie[
Fie

NikBT
52Ge

cDHAGe1cTFaGe
ng1h1

11@bAGe1ag2Ge
n/r s#h2

, ~19!

where cDH5(Z/A3)@(11Z)3/2212Z3/2# ensures exac
transition to the Debye-Hu¨ckel limit at G→0, cTF
5(18/175)(12/p)2/3Z7/3(12Z21/310.2Z21/2) reproduces
the Thomas-Fermi limit@23# at Z→`, the parametersa
51.11Z0.475, b50.210.078(lnZ)2, and n51.1610.08 lnZ
provide a low-order approximation toFie for intermediater s
andG, and the functions

g15110.78@211Ge~Z/r s!
3#21~Ge /Z!1/2,

g2511
Z21

9 S 11
1

0.001Z212Ge
D r s

3

116r s
2

improve the fit at relatively larger s . The results of our non-
relativistic finite-temperature HNC calculations are rep
duced by settingh1 andh2 equal to unity; these factors com
into play in the relativistic case.

In the latter case, the asymptotic behavior of Eq.~19! at
G→` should change fromf ie}Gr s to f ie}Gr sA11xr

2. This
is achieved simply by settingh25(11xr

2)21/2. Then the
zero-temperature Thomas-Fermi limit@23# (r s!1,G→`,Z
→`) is reproduced exactly.

The factorh1 is devised to correct the fit at finiteZ in the
relativistic domain. A form chosen previously@1# was not
very accurate, as illustrated by the dotted lines in Fig. 3
the internal energy

uie[Uie /~NikBT!5] f ie~r s ,G!/] ln G. ~20!

A more accurate relativistic correction reads
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h1~xr !5
11xr

2/5

110.18Z21/4xr10.37Z21/2xr
21xr

2/5
. ~21!

The resultinguie @Eq. ~20!# is plotted by the solid lines in
Fig. 3. There is now a good agreement with the thermo
namic perturbation expansion@11# at largeG for any xr ,
without deteriorating the accuracy of the old fit in the no
relativistic domain. Quantitatively, for 1,G,100 andxr
,0.25, the difference between the fit and the HNC result
typically 2–3 %, with a maximum 8% forZ51, G5100,
and r s52.074 ~the maximumr s value used in the calcula
tions!. Note that the model of EIP has only marginal physic
relevance at such large values ofr s and G because of the
incipient bound-state formation. On the other hand, at v
strong coupling (G>100) and relativistic densities (xr
.0.1), the results of Ref.@11# and of our relativistic HNC
calculations are reproduced by our fit with typical deviati
of 1–3 % ~maximum 4.3% atZ56, G5100, andxr510).

The heat capacity per ion in units ofkB ,CV /NikB , of the
classical EIP liquid is shown in Fig. 4 forZ56 and T
5106, and 107 K. These plasma conditions can occur, f
example, in interiors of some giant stars or in accreted en
lopes of neutron stars@24#. Various contributions, shown in
the figure, correspond to separate terms in Eq.~10!. At rela-
tively low densities, the main contribution is that of the ele
trons, with the limiting value3

2 Z59. With increasingr, the
electron gas becomes degenerate, and its heat capacit
creases. ThenCV is determined by the ion liquid. The Cou

lomb (i i ) contribution slightly exceeds the kinetic one (3
2 )

near freezing. According to the equipartition theorem, in
classical ionic crystal the potential and kinetic contributio

FIG. 3. Calculated~filled circles! and fitted~solid lines! normal-
ized contribution to the internal energy due to polarization,uie , as
a function ofG at different values ofxr , Z56 ~left panel! and as
function of xr at two values ofZ, G5150 ~right panel!. For com-
parison, approximations@1# ~dotted lines! and @11# ~dashed lines!
are also shown.
-

-

is

l

y

e-

-

de-

a
s

are each equal to32 ~apart from small anharmonic correc
tions!. This means that freezing is accompanied by a drop
CV , equal to the excess of the potential contribution over
kinetic one in the ionic liquid just before freezing. We se
however, that this excess~and hence the drop! is not large.

The values ofCV,i i determined by Eq.~17! ~thick dashes!
and derived from the fit in Ref.@6# ~thin dashes! are close to
each other near freezing. With decreasing density, howe
a large difference develops, which is natural because the
mula in Ref.@6# is not applicable at smallG. Of the same
origin is the striking discrepancy between the approxim
tions for CV,ie derived from Eq. ~19! ~thick dot-dashed
curve! and from the fit in Ref.@11# ~YS!, seen at lowr. In
this domain, our fit describes the change of sign ofCV,ie
from negative in the strong-coupling regime to positive
the Debye-Hu¨ckel domain. However, an appreciable diffe
ence with Ref.@11# persists even at larger, where both fits
describef ie equally well~within uncertainties in the structur
factor!. This reflects insufficient accuracy of the present-d
determination of the functional form ofS(k,G) for the
strongly coupled Coulomb liquid.

V. ELECTRON SCREENING IN A COULOMB SOLID

A. Perturbation approximation

At high densities and below a certain temperature,
ionic Coulomb plasma forms a Wigner crystal. For examp
interiors of cool white dwarfs@25# are expected to be in th
solid state. The cooling is governed essentially by the co
pressibility and heat capacity of their interiors, whose cen
regions are compressed to relativistic densities. In that c
the main contributions to the internal energy~the zero-
temperature electron-gas kinetic energy and the ion elec
static part! do not depend on temperature, so that the h

FIG. 4. Absolute values of the heat capacity of fully ionize
liquid carbon atT5106 K and 107 K. Dotted curves show the
contributions of the electrons~heavy line, ideal Fermi-gas contribu
tion; light line, exchange and correlation correction!; dashed lines,
contributions of the ions~long dashes, ideal-gas part; short dash
correlation part!; and dot-dashed curves, ion-electron~polarization!
correction. The latter curves end atG5175. The dips on theeeand
ie curves signify a change of sign. For thei i and ie contributions,
present approximations~heavy lines! are compared with those in
Refs. @6# ~DWS! and @11# ~YS! ~light lines!.The heavy solid line
shows the sum of all terms.
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capacity is entirely determined by small temperatu
dependent corrections. Therefore, evaluation of the polar
tion corrections for the Coulomb solid is important for astr
physical applications.

Since the maximum ion frequency in the solid is qu
small compared to the electron plasma frequency, one
use the adiabatic~i.e., Born-Oppenheimer! approximation,
which allows us to decouple the electron and ion dynam
Even so, a calculation of the thermodynamic functions o
Coulomb solid with allowance for theie interactions is a
complex problem. A rigorous treatment would consist in c
culating the dynamical matrix and solving a correspond
dispersion relation for the phonon spectrum. The first-or
perturbation approximation for the dynamical matrix of
classical Coulomb solid with the polarization correction
based on aneffectiveinterion potential, was derived by Po
lock and Hansen@26#. In a quantum crystal, strictly speak
ing, one would have to consider the electron-phonon inte
tions, in order to calculate the perturbed spectrum.

As mentioned above, the polarization of the electron
is weak at the high densities in which we are interested. T
suggests a simpler, semiclassical perturbation approac
evaluate the polarization corrections. The ionic crystal wi
out ie interactions is a natural reference model. Note that
effective interion potential in the adiabatic perturbation a
proximation@26# is just the electrostatic potential, commo
to the liquid and solid phases. The difference of this poten
from the bare Coulomb potential can be considered as
turbation. Then we can apply the Galam-Hansen@21# pertur-
bation theory, which is based on theexactexpression for the
free energy involving an integration over a coupling para
eter related to the ‘‘strength’’ of the perturbation. Thus w
recover Eq.~18! in the case of a solid, withS(k) replaced by
(4p)21*S(k)dV, wheredV is a solid angle element in th
direction ofk.

The resulting polarization correction~18! does not take
into account quantum aspects of theie ~electron-phonon!
interactions, but it allows us to study effects arising fro
quantum modifications of the ion-ion correlations. The
correlations are described by the structure factorS, which
depends in this case onk, G, andh.

B. Structure factor

In a crystal, the static structure factor is given by

S~k,G,h!5
1

Ni
(
i , j

eik•(Ri2Rj )^eik•ûie2 ik•ûj&T , ~22!

whereûi is an operator of ion displacement from an equil
rium lattice positionRi , and ^•••&T denotes the canonica
average. The structure factor~22! can be decomposed int
elastic~or static-lattice! and inelastic parts,

S~k,G,h!5S8~k,G,h!1S9~k,G,h!. ~23!

The elastic part is~e.g., Ref.@27#!

Ssol8 ~k,G,h!5~2p!3nie
22W(k,G,h)( 8

G

d~k2G!, ~24!
-
a-
-

an

s.
a

-
g
r

,

c-

s
is
to
-
e
-

l
r-

-

e

where (G8 denotes a summation over all reciprocal-latti

vectorsG but G50, ande22W[^exp(ik•û)&T
2 is the Debye-

Waller factor. In isotropic~e.g., cubic! crystals, one has

2W~k,G,h!5r T
2~G,h!k2/3, ~25!

where r T
25^û2&T is the mean-squared ion displacement~cf.

@27#!. In a harmonic crystal,

r T
25

a2h

G Fm21

2
1 K vp

vn

1

exp~\vn /kBT!21L
ph
G , ~26!

wheren[(q,s), s51,2,3 enumerates phonon modes,q is a
phonon wave vector,vn is the frequency,̂ •••&ph denotes
averaging over phonon wave vectors and polarizations,
mn[^(vn /vp)n&ph. In the classical limit (h→0), r T

2

5m22a2/G; and in the quantum limit (h→`), r T
2

;m21a2h/(2G). Numerical values ofm21 and m22 are
given in Table II. At arbitraryh, a convenient analytic ap
proximation tor T

2 is provided by a model of the harmoni
Coulomb crystal@28#, which treats two acoustic modes a
degenerate Debye modes withvn5avpq/qBZ , whereqBZ
5(6p2ni)

1/3 is the equivalent radius of the Brillouin zone
and the longitudinal mode is an Einstein mode withvn

5gvp . Accuracy of this model for the thermodynamics
the bcc Coulomb crystal has been demonstrated in Ref.@29#,
where the valuesa50.399 andg50.899 have been derive
from the requirement that the model should reproduce
exact values ofm22 andm25 1

3 . For the fcc lattice, we ob-
tain a50.413 andg50.892. Using this model, we can ca
culate the second term in Eq.~26!, which yields

r T
25

a2

G Fm21h

2
1

h

3g~egh21!
1

2

a3hE0

ah tdt

et21G . ~27!

This approximation ensures the correct classical and qu
tum limits. Between these limits, the maximum deviati
from accurate numerical results@33# reaches 1.6% ath'9
for both bcc and fcc lattices.

According to Eq.~23!, Eq. ~18! can be rewritten as

f ie5 f ie8 1 f ie9 , ~28!

f ie8 52
3G

2 ( 8
G

«~G,xr !21

~Ga!2 exp@22W~G,G,h!#,

~29!

f ie9 52
Ga

p E
0

`

S9~k,G,h!@«~k,xr !21#dk. ~30!

The inelastic part of the structure factor of a harmonic crys
reads@4#

TABLE II. Parameters of Coulomb crystals@33#.

Lattice type m22 m21 m1 CM

bcc 12.973 2.798 55 0.511 3875 0.895 929 255 6
fcc 12.143 2.719 82 0.513 1940 0.895 873 615 1
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S95e22W(
R

eik•R@ev(R)k2
21#, ~31!

v~R!5
3\

2mi
K ~k•en!2

k2

cos~q•R!

vn tanh~\vn/2kBT!L
ph

~32!

~whereen is a phonon polarization vector!. A straightforward
use of this expression is impractical because of a slow c
vergence of the sum. For this reason, we employ the appr
mation @4#

S9~k,G,h!'S09~k,G,h![12exp@22W~k,G,h!#.
~33!

As argued in Ref.@4#, this approximation is good for use i
integrals overk at k.qBZ . In papers addressed to the tran
port properties of Coulomb plasmas@4,30#, integrals overk
were truncated from below atk5qBZ . In Eq. ~30!, however,
it is essential to recover the correct limiting behavior
S9(k) at k→0, since @«21#}k22 becomes large in this
limit. Therefore, we use a piecewise approximation:

S95H S09 ~k>k1!,

S19[
1
2 k2 @]2S9/]k2#k→0 ~k,k1!,

~34!

where the parameterk1 will be determined below. The exac
result for classical Coulomb plasmas@31# reads S19(k)
5(ka)2/(3G). In a general case,S19(k) can be found from
Eq. ~31!. At small k, the expression in the square brackets
Eq. ~31! can be replaced byv(R)k2, which corresponds to
the one-phonon approximation. Changing the order of av
aging and summation, we see that the summation yields d
function d(k6q2G); therefore, q56k as long as k
,minG'2qBZ . Hence, only the longitudinal phonon mod
contributes in this limit. The frequency of this mode in
Coulomb crystal tends tovp at smallq ~e.g., @26#!, which
enables us to perform averaging in Eq.~32!. Finally, we
obtain

S19~k,G,h!5
~ka!2

6G

h

tanh~h/2!
. ~35!

In order to test our approximation~34! and to find the
optimum value ofk1 , let us consider the electrostatic ener
Uel-st of a Coulomb crystal,

uel-st[
Uel-st

NikBT
5

Ga

p E
0

`

@S~k!21#dk5u81u9, ~36!

where, according to Eqs.~23! and ~24!,

u85
3G

2 ( 8
G

e22W(G,G,h)

~Ga!2
~37!

is the static-lattice part. Baikoet al. @32# have shown that

u8

G
52CM1

r T
2

2a2 1A3

p

a

2r T
1•••,
n-
i-

-

f

r-
lta

where the terms not explicitly written are exponentia
small at largeG. For the inelastic contribution, our mode
yields u95u091u19 , where

u095
Ga

p E
0

`

@S09~k!21#dk52A3

p

Ga

2r T
, ~38!

u195
Ga

p E
0

k1
@S19~k!2S09~k!#dk

5
~k1a!3

18p

h

tanh~h/2!
2

Ga

p Fk12
A3p

2r T
erf

r Tk1

A3
G .

~39!

On the other hand, in the harmonic lattice approximati
Uel-st52NiCM(Ze)2/a1Uv/2, where the first term repre
sents the energy of a perfect ionic lattice in uniform electr
background,CM being the Madelung constant~Table II!,
and, from the virial theorem, the second term is one-half
the vibrational energy of a harmonic crystal,

Uv53NikBTF K vn

vp

h

ehvn /vp21
L

ph

1
m1h

2 G . ~40!

We determinek1 so as to recover the classical limituel-st
52CMG13/2 ath50 andG→`. This yields

k1

qBZ
5S m2223

m2221D 1/3

'0.94. ~41!

Figure 5 showsuel-st calculated from Eqs.~37!–~39! for the
bcc crystal atfinite h and G ~dot-dashed lines!, compared
with a calculation in whichS9 is set equal toS09 at anyk
~dotted lines! and with results of numerical calculations@33#.

FIG. 5. Normalized electrostatic energy of a bcc Coulomb cr
tal calculated using the approximate structure factor given by
~34! ~solid lines! compared with analogous calculations with
model structure factor, Eq.~33! ~dotted lines!, and with accurate
numerical calculations@33# ~triangles!. Upper curve of each type o
symbol corresponds toG5200 and lower one toG5500. Long-
dashed line displays the Madelung limit.
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We see that our modification of the structure factor ak
,0.94qBZ provides a significant improvement over th
model without such modification~denoted as HL1 in Ref
@32#!.

C. Results

Using Eqs.~28!–~30! and ~33!–~35!, we have calculated
the polarization correctionf ie over a wide range of param
eters: 80<G<33104, 1022<xr<102, and 1<Z<92. Not
all combinations of the considered parameters are physic
relevant; for instance, atZ51 and largexr the ion-exchange
effects neglected in our study become important. The us
such an extended set of parameters, however, delivers
bustness to the fitting formula presented below.

Some results of our calculations are shown in Fig. 6. So
lines correspond to the piecewise approximation~34! of the
structure factor in the classical case (h→0). Dashed lines on
the left panel reproduce calculations in the liquid w
S(k,G) from Ref. @22#. The upper and lower dotted lines
every value ofxr show, respectively, the results of calcul
tions with the inelastic part of the structure factor replaced
S09 ~as in the HL1 model of Ref.@32#! and by 0~as in Refs.
@4,30#!. Compared to these simplified approximations,
present model provides a smaller discontinuity off ie at the
freezing point~near the ends of the dashed lines!. On the
other hand, the divergence of the dotted curves towa
smallerG shows that the result is still model-dependent. T
model dependence disappears atG*3000, since the static
lattice contribution becomes relatively large.

In reality, at large values ofG and small values ofxr
shown in Fig. 6, the quantization of ionic vibrations becom
important. This quantization considerably modifies the str

FIG. 6. Normalized polarization correctionf ie to the free energy
of a Coulomb crystal. Left panel: log10(2 f ie /G) against log10G at
Z56 for several values ofxr . Right panel: log10(2 f ie /G) against
log10xr at G5103 for several values ofZ. Solid lines: a classica
solid; dot-dashed lines: quantum effects included. On the left pa
dotted lines show the results for the classical solid with simplifi
structure factors, and dashed lines show the results in a liquid.
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ture factor. This effect is taken into account by lettingh be
finite in Eqs.~27! and~35!. Results of the calculations, wher
h was determined from Eq.~9! assumingA52Z, are plotted
in Fig. 6 by dot-dashed lines. The curves on the left pa
become flat ash becomes large, which corresponds to
approximate proportionalityf ie}G. As a consequence, th
polarization contribution to the specific heat,CV,ie , goes to
zero at largeh ~but remains one of the leading contribution
as shown below!.

The numerical results can be fitted by the expression

f ie52 f `~xr !G$11A~xr !@Q~h!/G#s%, ~42!

where

f `~x!5aTFZ
2/3b1 A11b2 /x2,

A~x!5
b31a3x2

11b4x2 ,

Q~h!5A11~qh!2,

and parameterss andb1–b4 depend onZ:

s5@110.01~ ln Z!3/210.097Z22#21,

b1512a1Z20.26710.27Z21,

b2511
2.25

Z1/3

11a2Z510.222Z6

110.222Z6 ,

b35a4 /~11 ln Z!,

b450.395 lnZ10.347Z23/2.

The parameteraTF , related tocTF in Eq. ~19!, is chosen so as
to reproduce the Thomas-Fermi limit@23# at Z→`: aTF
5(54/175)(12/p)1/3a f50.003 52. The numerical param
etersa1–a4 andq are slightly different for bcc and fcc crys
tals; they are given in Table III.

For a classical crystal, an average error of the fit is 1%
all Z, xr , and G, and the maximum error is 3.1% atZ
592, G*104, andxr'2. In the quantum case (h5” 0), the
fit is accurate forZ>3 only. In the range 3<Z<30, an
average error is 1%, and a maximum 3% occurs atZ53, G
'100, andxr'2.

D. Discussion

The results presented in Fig. 6 indicate that, although
polarization in a Coulomb crystal is very weak, it does n
vanish even at arbitrarily largeG andxr . As in the case of
strongly coupled liquid, f ie is roughly proportional to
(kTFa)2, which tends to a finite limit at relativistic densitie
The order of magnitude of the screening correctiond ie

l,
d

TABLE III. Parameters of Eq.~42!.

Lattice type a1 a2 a3 a4 q

bcc 1.1866 0.684 17.9 41.5 0.20
fcc 1.1857 0.663 17.1 40.0 0.21



h

e-
-

in
e
la
er
b
t

2,

we

in

-

erate

a-

the
e-

a-
n-

P

ri-

ac-

ec

th
un

en-
c
lid,

total
gion
ula-

8562 PRE 62ALEXANDER Y. POTEKHIN AND GILLES CHABRIER
5Fie /Ftot for a classical Coulomb plasma at arbitrarily hig
densities is given by the Thomas-Fermi result@23#, which is
reproduced by Eq. ~42! at G→` and Z→`: d ie
'0.004Z2/3. A quantitative difference of the perturbation r
sult at finiteZ from the Thomas-Fermi limit is quite notice
able,;Z20.3.

As mentioned in Sec. V A, our treatment of the screen
contribution is approximate. Nevertheless, we can use th
results in order to demonstrate the importance of the po
ization corrections. On the upper panel of Fig. 7, the diff
enceD f ie betweenf ie values in the solid and liquid Coulom
plasmas at the OCP melting pointG5175 is plotted agains
Z for three values ofxr . The largestxr510 represents vir-
tually the ultrarelativistic limit. When compared to Fig.
this plot shows thatD f ie is sufficiently large to affectGm .
This effect is shown on the lower panel of Fig. 7, where
have plotted our estimate ofGm at xr51 andxr@1. Since
D f ie remains finite at anyxr , the classical OCP valueGm
5175 is never exactly recovered even at arbitrarily larger.

Another important effect of the polarization corrections
the solid phase is that on the specific heatCV . By differen-
tiation of Eq.~42!, we obtain

uie52 f `G@11A~12s/Q2!~Q/G!s#, ~43!

CV,ie

NikB
5 f `sAS G

QD 12s ~qh!2211s

Q3 . ~44!

In a classical crystal,CV,ie is only a small negative correc
tion to the totalCV'3NikB . WhenT decreases much below
Tp , the heat capacity of an ionic crystal@29# goes to zero as
CV,i'1.6NikBp4/(ah)3}T3, whereas theie contribution
becomes positive and decreases as

CV,ie;NikBf `sA~RS/3q2!(12s)/2~qh!21}T, ~45!

FIG. 7. Upper panel: difference between polarization corr
tions to the free energy in the solid and liquid phases atG
5175,xr51,3,10. Lower panel: Coulomb coupling parameter at
melting point when polarization corrections are taken into acco
g
se
r-
-

at the same rate as the heat capacity of a strongly degen
electron gas@11#,

CV,e;ZNi~kBT/mec
2!p2A11xr

2/xr
2 . ~46!

Equation~45!, derived from the fit~42!, agrees with the lim-
iting expression ath→`, which follows from Eqs.~18!,
~24!, ~33!, and~27!:

CV,ie

NikB
;

p2

a3h F( 8
G

«~G,xr !21

3

2
2a3

9p E
k1

`

@«~k,xr !21#k2dkG . ~47!

Thus CV,ie becomes larger thanCV,i at sufficiently lowT,
which probably signifies that the thermodynamic perturb
tion theory is violated at thisT.

The discussed effect is of anharmonic nature. Indeed,
harmonic approximation for the Hamiltonian leads to the D
bye lawCV}T3, regardless of the inclusion of the polariz
tion correction in the force matrix. Therefore, the depe
denceCV,ie}T in Eqs.~45! and~47! is due to the use of the
full Coulomb potential~not only its harmonic part! in the ie
interaction energy, which has led to Eq.~18!.

It is also noteworthy that the modification of the OC
structure factor by the quantum effects rendersCV,ie posi-
tive. A plain extrapolation of theie contribution from the
liquid regime into the solid would be completely inapprop
ate, as it would result in a negative total heat capacity.

The behavior of different contributions to the heat cap
ity in the solid phase as a function ofr andT is illustrated in
Fig. 8. Here we consider12C at 105 K and 106 K. In the

-

e
t.

FIG. 8. Absolute values of heat capacity of carbon at high d
sities for two values ofT. The contributions of free electrons, ioni
OCP, and electron-ion interaction are shown by dotted, thin so
and dot-dashed lines, respectively. The thick curve shows the
value. The dashed part of the latter curve corresponds to the re
where the thermodynamic perturbation theory used in the calc
tion of CV,ie is not reliable.
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latter case~the bottom panel!, one can see also the discon
nuities at the liquid-solid phase transition atr
'105 g cm23, discussed above. As in a liquid, we ca
safely neglect the exchange correction, which atxr@1 is as
small as 2(a f /2p)CV,e;21023CV,e . At relatively low
densities,CV is determined mainly by the ionic contribution
As Tp becomes greater thanT with increasing density, the
phonon contribution toCV freezes out rapidly, andCV be-
comes determined by the degenerate electron gas, pola
by the electric field of ions.

This may have important consequences for astrophys
applications. In particular, the heat capacity of old wh
dwarfs, whose temperature is so low that their interiors
made of quantum Coulomb crystals@25#, may be substan
tially influenced by the polarization effects@34#.

VI. SUMMARY

We have improved analytic approximations@1# for the
contributions to the free energy of a Coulomb liquid due
the i i and ie correlations. In addition, we have suggested
approximation for theie contribution to the free energy of
Coulomb crystal.

An improvement of thei i part enables us to determin
accurately the classical OCP melting point. The Coulo
coupling parameter at the phase transition is found to
.
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e
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b
e

Gm'175, slightly larger than a previously determined valu
An improvement of theie part in the liquid phase yields a
better precision at densitiesr*106 g cm23, where the elec-
trons are relativistic. Finally, our estimates of theie part of
the free energy of a Coulomb crystal show that it is imp
tant for applications. For example, our results demonst
that it affects the melting of a classical Coulomb crystal a
may contribute appreciably to the heat capacity of a quan
crystal. Since our calculations for the Coulomb solid a
based on an approximate method and performed using
approximate structure factor, the latter results can be con
ered as estimates only. These estimates show, however
the polarization corrections in Coulomb crystals are not
unimportant as was often believed; they deserve to be s
ied further using more elaborate methods.
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